Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Transboundary and Emerging Diseases ; 2023, 2023.
Artículo en Inglés | ProQuest Central | ID: covidwho-2320875

RESUMEN

Porcine sapelovirus (PSV) is an emerging swine enteric virus that can cause various disorders including acute diarrhea, respiratory distress, reproductive failure, and polioencephalomyelitis in pigs. In this study, we isolated a PSV strain HNHB-01 from a clinical porcine deltacoronavirus- (PDCoV-) positive intestinal content of a diarrheic piglet. PSV was first identified using the small RNA deep sequencing and assembly, and further identified by the electron microscopic observation and the immunofluorescence assay. Subsequently, this virus was serially passaged in swine testis (ST) cells, and the complete genomics of PSV HNHB-01 passage 5 (P5), P30, P60, and P100 were sequenced and analyzed. 9 nucleotide mutations and 7 amino acid changes occurred in the PSV HNHB-01 P100 strain when compared with the PSV HNHB-01 P5. Pathogenicity investigation showed that orally inoculation of PSV HNHB-01 P30 could cause obvious clinical symptoms and had broad tissue tropism in 5-day-old piglets. Epidemiological investigation revealed that PSV infections and the coinfections of diarrhea coronaviruses were highly prevalent in swine herds. The complete genomes of 8 representative PSV epidemic strains were sequenced and analyzed. Phylogenetic analysis revealed that the PSV epidemic strains were closely related to other PSV reference strains that located in the Chinese clade. Furthermore, recombination analysis revealed that the recombination events were occurred in downstream of the 2C region in our sequenced PSV HNNY-02/CHN/2018 strain. Our results provided theoretical basis for future research studies of the pathogenic mechanism, evolutionary characteristics, and the development of vaccines against PSV.

2.
Heliyon ; 9(3): e14533, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: covidwho-2296654

RESUMEN

The social contact rate has influenced the transmission of COVID-19, with more social contact resulting in more contagion cases. We chose 18 countries with the most confirmed cases in the first 200 days after the Wuhan lockdown. This was the first study using the dynamic social contact rate to simulate the epidemic under diverse restriction policies over 500 days since the COVID-19 outbreak. The developed General Dynamic Model suggested that the probability of contagion ranged from 12.52% to 39.39% in the epidemic. The geometric mean of the social contact rates differed from 18.21% to 96.00% between countries. The restriction policies in developed economies were 3.5 times more efficient than in developing economies. We compare the effectiveness of different policies for disease prevention and discuss the influence of policy adjustment frequency for each country. Maintaining the tightest restriction or alternate tightening and loosening restrictions was recommended, with each having an average 72.45% and 79.78% reduction in maximum active cases, respectively.

3.
Exposome ; 3(1): osad005, 2023 May.
Artículo en Inglés | MEDLINE | ID: covidwho-2296653

RESUMEN

Environmental exposures have been linked to COVID-19 severity. Previous studies examined very few environmental factors, and often only separately without considering the totality of the environment, or the exposome. In addition, existing risk prediction models of severe COVID-19 predominantly rely on demographic and clinical factors. To address these gaps, we conducted a spatial and contextual exposome-wide association study (ExWAS) and developed polyexposomic scores (PES) of COVID-19 hospitalization leveraging rich information from individuals' spatial and contextual exposome. Individual-level electronic health records of 50 368 patients aged 18 years and older with a positive SARS-CoV-2 PCR/Antigen lab test or a COVID-19 diagnosis between March 2020 and October 2021 were obtained from the OneFlorida+ Clinical Research Network. A total of 194 spatial and contextual exposome factors from 10 data sources were spatiotemporally linked to each patient based on geocoded residential histories. We used a standard two-phase procedure in the ExWAS and developed and validated PES using gradient boosting decision trees models. Four exposome measures significantly associated with COVID-19 hospitalization were identified, including 2-chloroacetophenone, low food access, neighborhood deprivation, and reduced access to fitness centers. The initial prediction model in all patients without considering exposome factors had a testing-area under the curve (AUC) of 0.778. Incorporation of exposome data increased the testing-AUC to 0.787. Similar findings were observed in subgroup analyses focusing on populations without comorbidities and aged 18-24 years old. This spatial and contextual exposome study of COVID-19 hospitalization confirmed previously reported risk factor but also generated novel predictors that warrant more focused evaluation.

4.
Heliyon ; 2023.
Artículo en Inglés | EuropePMC | ID: covidwho-2263372

RESUMEN

The social contact rate has influenced the transmission of COVID-19, with more social contact resulting in more contagion cases. We chose 18 countries with the most confirmed cases in the first 200 days after the Wuhan lockdown. This was the first study using the dynamic social contact rate to simulate the epidemic under diverse restriction policies over 500 days since the COVID-19 outbreak. The developed General Dynamic Model suggested that the probability of contagion ranged from 12.52% to 39.39% in the epidemic. The geometric mean of the social contact rates differed from 18.21% to 96.00% between countries. The restriction policies in developed economies were 3.5 times more efficient than in developing economies. We compare the effectiveness of different policies for disease prevention and discuss the influence of policy adjustment frequency for each country. Maintaining the tightest restriction or alternate tightening and loosening restrictions was recommended, with each having an average 72.45% and 79.78% reduction in maximum active cases, respectively.

5.
Front Med (Lausanne) ; 9: 972978, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-2246627

RESUMEN

Background: The management of LT patients during COVID-19 pandemic is important. Immunosuppressants (IS) are key therapy agents after liver transplant. Different ISs have different side effects. Calcineurin inhibitor (CNI) may lead to metabolic acidosis while mycophenolate mofetil (MMF) showed rare nephrotoxicity. We report a post-liver transplant girl who was infected with SARS-CoV-2, developing a severe mixed acidosis 3 months after the transplantation. Her acidosis was improved after withdrawing of MMF, leading the suspicion that acidosis maybe a rare side effect of MMF. Case presentation: A girl was admitted to our hospital due to SARS-CoV-2 infection, 3 months before admission the patient received LT due to Niemann-Pick disease (NPD). During hospitalization, blood gas analysis showed severe mixed acidosis. To relieve mixed acidosis, the patient was given oral rehydration salt and liquid replacement therapy. Considering that immunosuppressants may cause metabolic acidosis, dose of CsA was decreased and MMF was discontinued. Results: However, liquid replacement therapy and decreased CsA dose cannot improve the condition. As an attempt, MMF was discontinued, and 3 days later, the girl's acidosis was relieved, the latest blood gas analysis was normal with the original dose of CsA and no use of MMF or other IS. In addition, we used Naranjo Scale to see if adverse drug reactions (ADRs) existed. The final score was 6 which means MMF contributes to acidosis probably. Conclusion: The girl's mixed acidosis cannot be explained by Niemann-Pick disease and SARS-CoV-2 infection. CNIs could cause metabolic acidosis but declining the dose of CsA didn't improve her acidosis while withdrawing MMF showed a good effect. Together with the Naranjo Scale result, we suspect that acidosis maybe a rare side effect of MMF.

6.
Int J Mol Sci ; 24(1)2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: covidwho-2241185

RESUMEN

Transmissible gastroenteritis virus (TGEV) is a coronavirus causing diarrhea with high incidence in swine herds. Its persistent infection might lead to epithelial-mesenchymal transition (EMT) of swine intestinal epithelial cells, followed by subsequent infections of other pathogens. Enterococcus faecalis (E. faecalis) is a member of the enteric microorganisms and an opportunistic pathogen. There is no report of secondary E. faecalis infection to TGEV, even though they both target to the intestinal tracts. To investigate the interactions between TGEV and E. faecalis, we set up an in vitro infection model by the swine IPEC-J2 cells. Dynamic changes of cell traits, including EMT and cell motility, were evaluated through qPCR, Western blot, electronic microscopy, scratch test, Transwell migration test and invasion test, respectively. The adhesion and invasion tests of E. faecalis were taken to verify the impact of the preceding TGEV infection. The cell morphology and molecular marker evaluation results showed that the TGEV persistent infection induced EMT on IPEC-J2 cells; increased cellular motility and invasion potential were also observed. Spontaneously, the expression levels of fibronectin (FN) and the membrane protein integrin-α5, which are dominant bacterial receptors on IPEC-J2 cells, were upgraded. It indicated that the bacteria E. faecalis adhered to IPEC-J2 cells through the FN receptor, and then invaded the cells by binding with the integrin-α5, suggesting that both molecules were critical for the adhesion and invasion of E. faecalis to IPEC-J2 cells. Additionally, it appeared that E. faecalis alone might trigger certain EMT phenomena, implying a vicious circle might occur. Generally, bacterial and viral co-infections are frustrating yet common in both human and veterinary medicines, and our observations on enteric TGEV and E. faecalis interactions, especially the diversity of bacterial invasion strategies, might provide new insights into the mechanisms of E. faecalis pathogenicity.


Asunto(s)
Infecciones Bacterianas , Virus de la Gastroenteritis Transmisible , Animales , Humanos , Porcinos , Enterococcus faecalis , Infección Persistente , Intestinos , Células Epiteliales/microbiología , Integrinas
7.
Healthcare (Basel) ; 11(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: covidwho-2239647

RESUMEN

This study focuses on the cooperative attitude and intention of retail stores in Taiwan to cooperate with the government's related pandemic prevention measures. The study is based on the Theory of Planned Behavior (TPB). The study includes factors such as perceived risk of infection, job stress, pandemic prevention IT (information technology) convenience, pandemic prevention attitude, and pandemic prevention intention. Pandemic prevention attitude is used as a mediating variable to establish the research framework. This study collected research data through a questionnaire survey. A total of 457 valid questionnaires were collected through an electronic questionnaire platform. The findings showed that perceived risk of infection and pandemic prevention IT convenience had a positive and significant effect on pandemic prevention attitude (ß = 0.567; ß = 0.422) and pandemic prevention intention (ß = 0.424; ß = 0.296). Job stress has a significant negative effect on attitude (ß = -0.173). In addition, job stress influenced intention through attitudes. Finally, perceived risk, job stress, and IT convenience had high explanatory power (R2 = 0.706) on attitudes. Perceived risk, IT convenience, and attitude also had moderate explanatory power (R2 = 0.588) on prevention intention. The study also suggests practical recommendations to improve and cooperate with pandemic prevention intention.

8.
Environ Adv ; 11: 100352, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: covidwho-2237542

RESUMEN

Post-acute sequelae of SARS-CoV-2 infection (PASC) affects a wide range of organ systems among a large proportion of patients with SARS-CoV-2 infection. Although studies have identified a broad set of patient-level risk factors for PASC, little is known about the association between "exposome"-the totality of environmental exposures and the risk of PASC. Using electronic health data of patients with COVID-19 from two large clinical research networks in New York City and Florida, we identified environmental risk factors for 23 PASC symptoms and conditions from nearly 200 exposome factors. The three domains of exposome include natural environment, built environment, and social environment. We conducted a two-phase environment-wide association study. In Phase 1, we ran a mixed effects logistic regression with 5-digit ZIP Code tabulation area (ZCTA5) random intercepts for each PASC outcome and each exposome factor, adjusting for a comprehensive set of patient-level confounders. In Phase 2, we ran a mixed effects logistic regression for each PASC outcome including all significant (false positive discovery adjusted p-value < 0.05) exposome characteristics identified from Phase I and adjusting for confounders. We identified air toxicants (e.g., methyl methacrylate), particulate matter (PM2.5) compositions (e.g., ammonium), neighborhood deprivation, and built environment (e.g., food access) that were associated with increased risk of PASC conditions related to nervous, blood, circulatory, endocrine, and other organ systems. Specific environmental risk factors for each PASC condition and symptom were different across the New York City area and Florida. Future research is warranted to extend the analyses to other regions and examine more granular exposome characteristics to inform public health efforts to help patients recover from SARS-CoV-2 infection.

9.
World J Pediatr ; 19(5): 478-488, 2023 May.
Artículo en Inglés | MEDLINE | ID: covidwho-2175144

RESUMEN

BACKGROUND: Gut microbiota alterations have been implicated in the pathogenesis of coronavirus disease 2019 (COVID-19). This study aimed to explore gut microbiota changes in a prospective cohort of COVID-19 children and their asymptomatic caregivers infected with the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) Omicron variant. METHODS: A total of 186 participants, including 59 COVID-19 children, 50 asymptomatic adult caregivers, 52 healthy children (HC), and 25 healthy adults (HA), were recruited between 15 April and 31 May 2022. The gut microbiota composition was determined by 16S rRNA gene sequencing in fecal samples collected from the participants. Gut microbiota functional profiling was performed by using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) software. RESULTS: The gut microbiota analysis of beta diversity revealed that the fecal microbial community of COVID-19 children remained far distantly related to HC. The relative abundances of the phyla Actinobacteria and Firmicutes were decreased, whereas Bacteroidetes, Proteobacteria, and Verrucomicrobiota were increased in COVID-19 children. Feces from COVID-19 children exhibited notably lower abundances of the genera Blautia, Bifidobacterium, Fusicatenibacter, Streptococcus, and Romboutsia and higher abundances of the genera Prevotella, Lachnoclostridium, Escherichia-Shigella, and Bacteroides than those from HC. The enterotype distributions of COVID-19 children were characterized by a high prevalence of enterotype Bacteroides. Similar changes in gut microbiota compositions were observed in asymptomatic caregivers. Furthermore, the microbial metabolic activities of KEGG (Kyoto Encyclopedia of Genes and Genomes) and COG (cluster of orthologous groups of proteins) pathways were perturbed in feces from subjects infected with the SARS-CoV-2 Omicron variant. CONCLUSION: Our data reveal altered gut microbiota compositions in both COVID-19 children and their asymptomatic caregivers infected with the SARS-CoV-2 Omicron variant, which further implicates the critical role of gut microbiota in COVID-19 pathogenesis.


Asunto(s)
COVID-19 , Microbioma Gastrointestinal , Adulto , Humanos , Niño , SARS-CoV-2 , Cuidadores , Estudios Prospectivos , ARN Ribosómico 16S/genética , Filogenia , Heces/microbiología
10.
J Clin Virol Plus ; 3(1): 100133, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: covidwho-2165517

RESUMEN

Although real-time reverse transcriptase polymerase chain reaction (real-time RT-PCR) remains as a golden standard for detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, it can not be easily expanded to large-scaled screening during outbreaks, and the positive results do not necessarily correlate with infectious status of the identified subjects. In this study, the performance of Vstrip® RV2 COVID-19 Antigen Rapid Test (RAT) and its correlation with virus infectivity was examined by virus culture using 163 sequential respiratory specimens collected from 26 SARS-CoV-2 infected patients. When the presence of cytopathic effects (CPE) in cell culture was used as a reference method for virus infectivity, the sensitivity, specificity and accuracy of Vstrip® RV2 COVID-19 Antigen Rapid Test was 96.43%, 89.63%, and 90.8%, respectively. The highest Ct value was 27.7 for RdRp gene and 25.79 for E gene within CPE-positive samples, and the highest Ct value was 31.9 for RdRp gene and 29.1 for E gene within RAT positive samples. When the Ct values of specimens were below 25, the CPE and RAT results had high degree of consistency. We concluded that the RAT could be a great alternative method for determining the infectious potential of individuals with high viral load.

11.
Journal of business research ; 156:113480-113480, 2022.
Artículo en Inglés | EuropePMC | ID: covidwho-2147332

RESUMEN

Vaccination offers health, economic, and social benefits. However, three major issues—vaccine quality, demand forecasting, and trust among stakeholders—persist in the vaccine supply chain (VSC), leading to inefficiencies. The COVID-19 pandemic has exacerbated weaknesses in the VSC, while presenting opportunities to apply digital technologies to manage it. For the first time, this study establishes an intelligent VSC management system that provides decision support for VSC management during the COVID-19 pandemic. The system combines blockchain, internet of things (IoT), and machine learning that effectively address the three issues in the VSC. The transparency of blockchain ensures trust among stakeholders. The real-time monitoring of vaccine status by the IoT ensures vaccine quality. Machine learning predicts vaccine demand and conducts sentiment analysis on vaccine reviews to help companies improve vaccine quality. The present study also reveals the implications for the management of supply chains, businesses, and government.

12.
J Bus Res ; 156: 113480, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: covidwho-2131353

RESUMEN

Vaccination offers health, economic, and social benefits. However, three major issues-vaccine quality, demand forecasting, and trust among stakeholders-persist in the vaccine supply chain (VSC), leading to inefficiencies. The COVID-19 pandemic has exacerbated weaknesses in the VSC, while presenting opportunities to apply digital technologies to manage it. For the first time, this study establishes an intelligent VSC management system that provides decision support for VSC management during the COVID-19 pandemic. The system combines blockchain, internet of things (IoT), and machine learning that effectively address the three issues in the VSC. The transparency of blockchain ensures trust among stakeholders. The real-time monitoring of vaccine status by the IoT ensures vaccine quality. Machine learning predicts vaccine demand and conducts sentiment analysis on vaccine reviews to help companies improve vaccine quality. The present study also reveals the implications for the management of supply chains, businesses, and government.

13.
Front Psychol ; 13: 1000541, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-2121898

RESUMEN

Since the COVID-19 pandemic, the tourism economy has been seriously affected. China has implemented a direct traveling management mechanism and recovered from the pandemic faster than the rest of the world. However, the COVID-19 situation is complicated and uncontrollable because of the available unclear information including difficult medical terminologies. This study attempts to find the determinants of the travel intention of China's tourists in the post-COVID-19 epidemic. Along with information overload and perception risk, an expanded research model of the Theory of Planned Behavior (TPB) was employed to propose the theoretical framework of this study. A survey was conducted among 518 tourists who spend their holiday in Hainan, which is a popular tourist destination in China. The empirical results show that information overload positively and significantly impacted perceived risk. Furthermore, perceived risk negatively affects the intention to travel. Perceived risk also negatively affected the attitude toward traveling. However, response self-efficacy did not have a significant effect on the intention to travel. Finally, based on the analysis results, this study proposes relevant research contributions and practical recommendations with management implications for the travel industries.

14.
Acta Veterinaria et Zootechnica Sinica ; 53(9):3190-3198, 2022.
Artículo en Chino | CAB Abstracts | ID: covidwho-2113778

RESUMEN

The purpose of this study was to investigate the antiviral effect of phenylpyridinone derivative JIB-04 on porcine deltacoronavirus (PDCoV), and explore the possible mechanism. Cell viability after treatment with different concentrations of JIB-04 was detected by CCK-8, and the 50% cytotoxic concentration (CC50) and 50% effective concentration (EC50) were calculated. TCID50 method was used to detect the effects of JIB-04 pretreatment and co-treatment on PDCoV replicationand the effect of JIB-04 treatment on virus attachment and penetration. Finally, qRT-PCR, TCID50 and Western blot methods were used to detect the effect of JIB-04 on virus replication at different times post infection. The results showed that JIB-04 did not affect the cell viability of LLC-PK cells at all tested concentrations, and CC50>640 micro mol.L-1, EC50=0.216 micro mol.L-1, and SI index is greater than 2 963. Compared with untreated virus infection group, JIB-04 treatment significantly reduced the virus titer (P < 0.001), but it had no effect on attachment or penetration of PDCoV. At 6 h post infection, compared with untreated virus infection group, virus titer in JIB-04 treatment group was significantly decreased (P < 0.01). At 12 and 24 h post infection, virus titer, genome copy number, and N protein expression level all significantly decreased (P < 0.01). JIB-04 has a low cytotoxicity and a high selective index, and can protect against PDCoV infection in vitro, making it a potential antiviral drug. JIB-04 can inhibit synthesis of viral RNA, protein and PDCoV replication.

15.
Discov Med ; 34(172): 83-95, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-2083709

RESUMEN

Sepsis is a life-threatening organ dysfunction caused by the maladjustment of the body's response to infection. Abnormal immune response plays an important role in the progression of sepsis, and immunomodulatory therapy is a promising therapeutic strategy for sepsis. Great efforts have been made recently to elucidate the mechanism by which immune dysfunction contributes to sepsis, and identify potential biomarkers and targets for the diagnosis and therapy of sepsis induced by emerging pathogens, especially for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)that causes COVID-19. In this review, we summarize recent progress on the understanding of immune dysregulation involved in sepsis, and highlight potential biomarkers and targets to evaluate immune status of the patients with sepsis for individualized and precise immunotherapy.


Asunto(s)
COVID-19 , Sepsis , Humanos , SARS-CoV-2 , COVID-19/terapia , Sepsis/terapia , Sepsis/diagnóstico , Factores Inmunológicos , Inmunoterapia , Biomarcadores
16.
Front Immunol ; 13: 972499, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-2029965

RESUMEN

Porcine Deltacoronavirus (PDCoV), an enveloped positive-strand RNA virus that causes respiratory and gastrointestinal diseases, is widely spread worldwide, but there is no effective drug or vaccine against it. This study investigated the optimal Selenium Nano-Particles (SeNPs) addition concentration (2 - 10 µg/mL) and the mechanism of PDCoV effect on ST (Swine Testis) cell apoptosis, the antagonistic effect of SeNPs on PDCoV. The results indicated that 4 µg/mL SeNPs significantly decreased PDCoV replication on ST cells. SeNPs relieved PDCoV-induced mitochondrial division and antagonized PDCoV-induced apoptosis via decreasing Cyt C release and Caspase 9 and Caspase 3 activation. The above results provided an idea and experimental basis associated with anti-PDCoV drug development and clinical use.


Asunto(s)
Infecciones por Coronavirus , Coronavirus , Selenio , Enfermedades de los Porcinos , Animales , Apoptosis , Coronavirus/fisiología , Masculino , Dinámicas Mitocondriales , Porcinos
17.
Acta Veterinaria et Zootechnica Sinica ; 53(6):2024-2028, 2022.
Artículo en Chino | CAB Abstracts | ID: covidwho-2025545

RESUMEN

This study aimed to analyze the proliferation characteristics of porcine deltacoronavirus (PDCoV) in suspension cultured porcine kidney cells LLC-PK1, so as to provide Candidate cell for large-scale production of PDCoV inactivated vaccine. LLC-PK1 cells were suspended by gradually decreasing serum method. PDCoV adaptive monoclonal cell lines were screened by limited dilution method. Indirect immunofluorescence method was used to identify the infectivity of PDCoV. The initial cell density, MOI, time of receiving virus collection and TPCK pancreatin concentration were screened to determine the best suspension culture conditions. The suspension cell strain LLC-PK1Sa which can proliferate PDCoV efficiently was screened out;PDCoV can specifically infect LLC-PK1 cells;PDCoV inoculated LLC-PK1Sa cells with a density of 2 x 106 cells.mL-1 according to the MOI of 10-3, When the final concentration of TPCK pancreatin reached 7.5 g.mL-1, the titer of virus solution harvested 48 h after inoculation was the highest. In this study, the efficient proliferation of PDCoV in LLC-PK1Sa suspension cells was realized for the first time, and the suspension culture conditions were preliminarily optimized, which could provide theoretical reference for large-scale production of PDCoV inactivated vaccine.

18.
J Med Virol ; 94(12): 5723-5738, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: covidwho-1971295

RESUMEN

Porcine deltacoronavirus (PDCoV) is a novel coronavirus that causes diarrhea in suckling piglets and has the potential for cross-species transmission, posing a threat to animal and human health. However, the susceptibility profile of different species of mice to PDCoV infection and its evolutionary characteristics are still unclear. In the current study, we found that BALB/c and Kunming mice are susceptible to PDCoV. Our results showed that there were obvious lesions in intestinal and lung tissues from the infected mice. PDCoV RNAs were detected in the lung, kidney, and intestinal tissues from the infected mice of both strains, and there existed wider tissue tropism in the PDCoV-infected BALB/c mice. The RNA and protein levels of aminopeptidase N from mice were relatively high in the kidney and intestinal tissues and obviously increased after PDCoV infection. The viral-specific IgG and neutralizing antibodies against PDCoV were detected in the serum of infected mice. An interesting finding was that two key amino acid mutations, D138H and Q641K, in the S protein were identified in the PDCoV-infected mice. The essential roles of these two mutations for PDCoV-adaptive evolution were confirmed by cryo-electron microscope structure model analysis. The evolutionary characteristics of PDCoV among Deltacoronaviruses (δ-CoVs) were further analyzed. δ-CoVs from multiple mammals are closely related based on the phylogenetic analysis. The codon usage analysis demonstrated that similar codon usage patterns were used by most of the mammalian δ-CoVs at the global codon, synonymous codon, and amino acid usage levels. These results may provide more insights into the evolution, host ranges, and cross-species potential of PDCoV.


Asunto(s)
COVID-19 , Enfermedades de los Porcinos , Aminoácidos , Animales , Anticuerpos Neutralizantes , Antígenos CD13/genética , Antígenos CD13/metabolismo , Deltacoronavirus , Humanos , Inmunoglobulina G , Mamíferos/metabolismo , Ratones , Filogenia , ARN , Porcinos
19.
Front Cell Dev Biol ; 9: 781267, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1957146

RESUMEN

Background: The symptoms of coronavirus disease 2019 (COVID-19) range from moderate to critical conditions, leading to death in some patients, and the early warning indicators of the COVID-19 progression and the occurrence of its serious complications such as myocardial injury are limited. Methods: We carried out a multi-center, prospective cohort study in three hospitals in Wuhan. Genome-wide 5-hydroxymethylcytosine (5hmC) profiles in plasma cell-free DNA (cfDNA) was used to identify risk factors for COVID-19 pneumonia and develop a machine learning model using samples from 53 healthy volunteers, 66 patients with moderate COVID-19, 99 patients with severe COVID-19, and 38 patients with critical COVID-19. Results: Our warning model demonstrated that an area under the curve (AUC) for 5hmC warning moderate patients developed into severe status was 0.81 (95% CI 0.77-0.85) and for severe patients developed into critical status was 0.92 (95% CI 0.89-0.96). We further built a warning model on patients with and without myocardial injury with the AUC of 0.89 (95% CI 0.84-0.95). Conclusion: This is the first study showing the utility of 5hmC as an accurate early warning marker for disease progression and myocardial injury in patients with COVID-19. Our results show that phosphodiesterase 4D and ten-eleven translocation 2 may be important markers in the progression of COVID-19 disease.

20.
Zhongguo Zhen Jiu ; 42(6): 634-8, 2022 Jun 12.
Artículo en Chino | MEDLINE | ID: covidwho-1903928

RESUMEN

OBJECTIVE: To observe the clinical effect of acupuncture on coronavirus disease 2019 (COVID-19) based on the conventional treatment. METHODS: A total of 35 patients with COVID-19 of mild or ordinary type were involved (3 cases dropped off). Acupuncture was applied on the basis of western medicine and Chinese materia medica treatment. Dazhui (GV 14), Fengchi (GB 20), Kongzui (LU 6), Hegu (LI 4), etc. were selected as the main acupoints, the supplementary acupoints and the reinforcing and reducing manipulations were selected according to syndrome differentiation. Acupuncture treatment was given once a day, 5 times a week. On day 3 and day 7 of acupuncture, relief condition of the main symptoms was observed. Before acupuncture and on day 3 and day 7 of acupuncture, efficacy evaluation scale of TCM on COVID-19 (efficacy evaluation scale) score was recorded. The effects of different intervention time of acupuncture on patients' hospitalization time were compared, the understanding of acupuncture treatment of patients discharged from hospital was recorded, the clinical efficacy and safety of acupuncture treatment were evaluated. RESULTS: On day 3 and day 7 of acupuncture, the symptoms of lung system and non lung system were both relieved; the scores of efficacy evaluation scale were both decreased compared before acupuncture (P<0.05), and the efficacy evaluation scale score of day 7 of acupuncture were lower than day 3 of acupuncture (P<0.05). The average hospitalization time of patients received early acupuncture was shorter than late acupuncture (P<0.05). The total effective rate was 84.4% (27/32) on day 7 of acupuncture, which was higher than 34.4% (11/32) on day 3 of acupuncture (P<0.05). During the acupuncture treatment, there were neither adverse reactions in patients nor occupational exposures in doctors. The patients generally believed that acupuncture could promote the recovery of COVID-19 and recommended acupuncture treatment. CONCLUSION: On the basis of the conventional treatment, acupuncture can effectively relieve the clinical symptoms in patients with COVID-19, early intervention of acupuncture can accelerate the recovery process. Acupuncture has good safety, clinical compliance and recognition of patients.


Asunto(s)
Terapia por Acupuntura , COVID-19 , Puntos de Acupuntura , COVID-19/terapia , Terapia Combinada , Humanos , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA